The 0-Rook Monoid

Joël Gay
joint work with Florent Hivert

Université Paris-Sud, LRI & École Polytechnique, LIX

Séminaire Lotharingien de Combinatoire - March 28, 2017
Contents

1 Symmetric Group and Rook Monoid
2 The 0-Rook Monoid
3 Representation theory
4 Work in Progress
Symmetric Group and Rook Monoid

\[S_n \]

Symmetric Group
The 0-Rook Monoid

Symmetric Group and Rook Monoid

\[\mathfrak{S}_n \xrightarrow{q=1} \mathcal{H}_n(q) \]

Symmetric Group \hspace{2cm} Iwahori-Hecke algebra

Joël Gay

The 0-Rook Monoid
\[\mathfrak{S}_n \xrightarrow{q=1} \mathcal{H}_n(q) \xrightarrow{q=0} H_n^0 \]

- Symmetric Group
- Iwahori-Hecke algebra
- Hecke monoid at \(q = 0 \)
$\mathfrak{S}_n \overset{q=1}{\leftarrow} \mathcal{H}_n(q) \overset{q=0}{\rightarrow} H^0_n$

Symmetric Group

Iwahori-Hecke algebra

Hecke monoid at $q = 0$

\[s_i^2 = 1 \]
\[s_{i+1}s_is_{i+1} = s_is_{i+1}s_i \]
\[s_is_j = s_js_i \]

\[T_i^2 = q1 + (q - 1)T_i \]
\[T_{i+1}T_iT_{i+1} = T_iT_{i+1}T_i \]
\[T_iT_j = T_jT_i \]

\[\pi_i^2 = \pi_i \]
\[\pi_{i+1}\pi_i\pi_{i+1} = \pi_i\pi_{i+1}\pi_i \]
\[\pi_i\pi_j = \pi_j\pi_i \]
Symmetric Group and Rook Monoid

\[\mathcal{S}_n \xleftarrow{q=1} \mathcal{H}_n(q) \xrightarrow{q=0} H^0_n \]

Symmetric Group

Iwahori-Hecke algebra

Hecke monoid at \(q = 0 \)

\[s_i^2 = 1 \]
\[s_{i+1}s_i s_{i+1} = s_i s_{i+1} s_i \]
\[s_i s_j = s_j s_i \]

\[T_i^2 = q1 + (q - 1) T_i \]
\[T_{i+1} T_i T_{i+1} = T_i T_{i+1} T_i \]
\[T_i T_j = T_j T_i \]

\[\pi_i^2 = \pi_i \]
\[\pi_{i+1} \pi_i \pi_{i+1} = \pi_i \pi_{i+1} \pi_i \]
\[\pi_i \pi_j = \pi_j \pi_i \]
\[\mathcal{S}_n \leftarrow q=1 \mapsto \mathcal{H}_n(q) \rightarrow q=0 \rightarrow H^0_n \]

Symmetric Group

\[
\begin{align*}
 s_i^2 &= 1 \\
 s_{i+1}s_is_{i+1} &= s_is_{i+1}s_i \\
 s_is_j &= s_js_i
\end{align*}
\]

\[s_i = T_i \]

Iwahori-Hecke algebra

\[
\begin{align*}
 T_i^2 &= q1 + (q - 1)T_i \\
 T_{i+1}T_iT_{i+1} &= T_iT_{i+1}T_i \\
 T_iT_j &= T_jT_i
\end{align*}
\]

Hecke monoid at \(q = 0 \)

\[
\begin{align*}
 \pi_i^2 &= \pi_i \\
 \pi_{i+1}\pi_i\pi_{i+1} &= \pi_i\pi_{i+1}\pi_i \\
 \pi_i\pi_j &= \pi_j\pi_i \\
 \pi_i &= T_i + 1
\end{align*}
\]
Interesting properties of H_n^0

- $|H_n^0| = n!$
Interesting properties of H_n^0

- $|H_n^0| = n!$
- H_n^0 acts on \mathfrak{S}_n (bubble sort):
 $$\pi_5 \cdot 3726145 = 3726415$$
 $$\pi_5 \cdot 3726415 = 3726415$$
Interesting properties of H_n^0

- $|H_n^0| = n!$
- H_n^0 acts on S_n (bubble sort):
 \[\pi_5 \cdot 3726145 = 3726415 \]
 \[\pi_5 \cdot 3726415 = 3726415 \]
- An element of H_n^0 is characterized by its action on the identity.
Interesting properties of H_n^0

- $|H_n^0| = n!$
- H_n^0 acts on S_n (bubble sort):
 \[\pi_5 \cdot 3726145 = 3726415 \]
 \[\pi_5 \cdot 3726415 = 3726415 \]
- An element of H_n^0 is characterized by its action on the identity.
Interesting properties of H_n^0

- $|H_n^0| = n!$
- H_n^0 acts on S_n (bubble sort):
 \[
 \pi_5 \cdot 3726145 = 3726415
 \]
 \[
 \pi_5 \cdot 3726415 = 3726415
 \]
- An element of H_n^0 is characterized by its action on the identity.
- Its simple and projective modules are well-known and combinatorial [Norton-Carter].
Interesting properties of H^0_n

- $|H^0_n| = n!$
- H^0_n acts on \mathcal{S}_n (bubble sort):
 \[
 \pi_5 \cdot 3726145 = 3726415 \\
 \pi_5 \cdot 3726415 = 3726415
 \]
- An element of H^0_n is characterized by its action on the identity.
- Its simple and projective modules are well-known and combinatorial [Norton-Carter].
- The induction and restriction of modules gives us a structure of tower of monoids, linked to QSym and NCSF [Krob-Thibon].
The rook monoid

Rook matrix of size $n = \text{set of non attacking rooks on an } n \times n$ matrix.
The rook monoid

Rook matrix of size $n = \text{set of non attacking rooks on an } n \times n$ matrix.

$$
\begin{pmatrix}
0 & 0 & 0 & 0 & \\
0 & 0 & \\
0 & 0 & 0 & \\
0 & \\
0 & 0 & 0 & 0
\end{pmatrix}
$$

$$
\begin{pmatrix}
0 & 0 & 0 & 0 & \\
0 & 0 & \\
0 & 0 & 0 & \\
0 & \\
0 & 0 & 0 & 0
\end{pmatrix}
$$

Joël Gay
The rook monoid

Rook matrix of size \(n \) = set of non-attacking rooks on an \(n \times n \) matrix.

<table>
<thead>
<tr>
<th>Rook Matrix</th>
<th>Rook Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0</td>
<td>0 4 2 3 1</td>
</tr>
<tr>
<td>0 0 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

The product of two rook matrices is a rook matrix.

Rook Monoid \(R_n \) = submonoid of the rook matrices \(M_n \) ⊃ \(R_n \) ⊃ \(S_n \)
The rook monoid

Rook matrix of size $n = \text{set of non attacking rooks on an } n \times n$ matrix.

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Rook Matrix

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Rook Vector

05 4 2 3 1

05 3 02 4 1
The rook monoid

Rook matrix of size $n =\) set of non attacking rooks on an $n \times n$ matrix.

Rook Matrix
\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

Rook Vector
\[
0_5 \ 4 \ 2 \ 3 \ 1
\]

The product of two rook matrices is a rook matrix.

Rook Monoid $R_n = \text{submonoid of the rook matrices}$

$M_n \supset R_n \supset \mathfrak{S}_n$
Symmetric Group and Rook Monoid

The 0-Rook Monoid

Representation theory

Work in Progress

\[S_n \]

Joël Gay

The 0-Rook Monoid
\[\mathfrak{S}_n \overset{q=1}{\longrightarrow} \mathcal{H}_n(q) \]

Iwahori
\[\mathcal{S}_n \xleftarrow{\ q=1 \ } \mathcal{H}_n(q) \xrightarrow{\ q=0 \ } H_0^n \]

Iwahori
\[\mathcal{S}_n \xrightarrow{q=1} \mathcal{H}_n(q) \xrightarrow{q=0} H_n^0 \]

\[R_n \]

Iwahori
The symmetric group \mathfrak{S}_n and the rook monoid R_n have representations in the Iwahori-Hecke algebra $H_n(q)$ and its Iwahori subalgebra $I_n(q)$, respectively. The Iwahori-Hecke algebra is a deformation of the group algebra of the symmetric group. Iwahori and Solomon extensively studied these structures.
Symmetric Group and Rook Monoid

The 0-Rook Monoid

Representation theory

Work in Progress

\[
\mathfrak{S}_n \quad \xrightarrow{q=1} \quad \mathcal{H}_n(q) \quad \xrightarrow{q=0} \quad \mathcal{H}_n^0
\]

\[
R_n \quad \xleftarrow{q=1} \quad \mathcal{I}_n(q) \quad \xrightarrow{q=0} \quad ??
\]

Iwahori, Solomon.
Symmetric Group and Rook Monoid

$\mathcal{S}_n \xleftarrow{q=1} \mathcal{H}_n(q) \xrightarrow{q=0} H_n^0$

$I_n(q) \xleftarrow{q=1} \mathcal{I}_n(q) \xrightarrow{q=0} R_n^0$

Iwahori, Solomon.
Contents

1 Symmetric Group and Rook Monoid

2 The 0-Rook Monoid

3 Representation theory

4 Work in Progress
Definition by right action on R_n

Operators $\pi_0, \pi_1, \ldots \pi_{n-1}$ acting on rook vectors
Definition by right action on R_n

Operators $\pi_0, \pi_1, \ldots, \pi_{n-1}$ acting on rook vectors

Bubble sort operators π_1, \ldots, π_{n-1}:

$$(r_1 \ldots r_n) \cdot \pi_i = \begin{cases}
 r_1 \ldots r_{i-1} r_{i+1} r_i r_{i+2} \ldots r_n & \text{if } r_i < r_{i+1}, \\
 r_1 \ldots r_n & \text{otherwise},
\end{cases}$$

Deletion operator π_0:

$$(r_1 \ldots r_n) \cdot \pi_0 = 0 r_2 \ldots r_n.$$
Definition by right action on R_n

Operators $\pi_0, \pi_1, \ldots \pi_{n-1}$ acting on rook vectors

Bubble sort operators π_1, \ldots, π_{n-1}:

$$(r_1 \ldots r_n) \cdot \pi_i = \begin{cases} r_1 \ldots r_{i-1}r_{i+1}r_ir_{i+2} \ldots r_n & \text{if } r_i < r_{i+1}, \\ r_1 \ldots r_n & \text{otherwise,} \end{cases}$$

Deletion operator π_0:

$$(r_1 \ldots r_n) \cdot \pi_0 = 0r_2 \ldots r_n.$$
Definition by right action on R_n

Operators $\pi_0, \pi_1, \ldots, \pi_{n-1}$ acting on rook vectors

Bubble sort operators π_1, \ldots, π_{n-1}:

$$(r_1 \ldots r_n) \cdot \pi_i = \begin{cases} r_1 \ldots r_{i-1}r_{i+1}r_ir_{i+2} \ldots r_n & \text{if } r_i < r_{i+1}, \\ r_1 \ldots r_n & \text{otherwise,} \end{cases}$$

Deletion operator π_0

$$(r_1 \ldots r_n) \cdot \pi_0 = 0r_2 \ldots r_n.$$
Definition by presentation

Generators: π_0, \ldots, π_{n-1}

Relations:

- $\pi_i^2 = \pi_i$ for $0 \leq i \leq n-1,$
- $\pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i \pi_{i+1}$ for $1 \leq i \leq n-2,$
- $\pi_i \pi_j = \pi_j \pi_i$ for $|i-j| > 1.$
- $\pi_1 \pi_0 \pi_1 \pi_0 = \pi_0 \pi_1 \pi_0 = \pi_0 \pi_1 \pi_0 \pi_1$
Definition by presentation

Generators: \(\pi_0, \ldots, \pi_{n-1} \)

Relations:

\[\pi_i^2 = \pi_i \quad 0 \leq i \leq n - 1,\]

\[\pi_i \pi_{i+1} \pi_i = \pi_{i+1} \pi_i \pi_{i+1} \quad 1 \leq i \leq n - 2,\]

\[\pi_i \pi_j = \pi_j \pi_i \quad |i - j| > 1.\]

\[\pi_1 \pi_0 \pi_1 \pi_0 = \pi_0 \pi_1 \pi_0 = \pi_0 \pi_1 \pi_0 \pi_1\]
Theorem

Both definitions (presentation and action on R_n) are equivalent.
Theorem

Both definitions (presentation and action on \(R_n \)) are equivalent.

Key Fact:

Theorem

The map \(f : R_n^0 \rightarrow R_n \) \(r \mapsto 1_n \cdot r \) is a bijection.
Symmetric Group and Rook Monoid

The 0-Rook Monoid

Representation theory

Work in Progress

Theorem

Both definitions (presentation and action on \(R_n \)) are equivalent.

Key Fact:

The map \(f : \left\{ \begin{array}{l} R_0^n \longrightarrow R_n \\ r \mapsto 1_n \cdot r \end{array} \right. \) is a bijection.

This also gives us canonical reduced expression of elements of \(R_n^0 \).

Joël Gay

The 0-Rook Monoid
Canonical reduced expression

Example: using coset R_5^0 / R_4^0

<table>
<thead>
<tr>
<th>Coset</th>
<th>30145</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_5^0</td>
<td>30145</td>
</tr>
<tr>
<td>R_4^0</td>
<td></td>
</tr>
<tr>
<td>R_5^0 / R_4^0</td>
<td>30145</td>
</tr>
</tbody>
</table>

Joël Gay

The 0-Rook Monoid
Canonical reduced expression

<table>
<thead>
<tr>
<th>Example: using coset R_5^0 / R_4^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>30145</td>
</tr>
<tr>
<td>$\downarrow \pi_4$</td>
</tr>
<tr>
<td>30154</td>
</tr>
<tr>
<td>30143</td>
</tr>
<tr>
<td>$\downarrow \pi_3$</td>
</tr>
<tr>
<td>30514</td>
</tr>
<tr>
<td>$\downarrow \pi_2$</td>
</tr>
<tr>
<td>35014</td>
</tr>
<tr>
<td>$\downarrow \pi_1$</td>
</tr>
<tr>
<td>53014</td>
</tr>
<tr>
<td>$\downarrow \pi_0$</td>
</tr>
<tr>
<td>03014</td>
</tr>
<tr>
<td>$\odot \pi_2$</td>
</tr>
<tr>
<td>30014</td>
</tr>
</tbody>
</table>
Canonical reduced expression

Example: using coset R_5^0 / R_4^0

\[
\begin{align*}
30145 \\
\downarrow \pi_4 \\
30154 \\
\downarrow \pi_3 \\
30514
\end{align*}
\]
Canonical reduced expression

Example: using coset R_5^0 / R_4^0

<table>
<thead>
<tr>
<th>Step</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30145</td>
</tr>
<tr>
<td>2</td>
<td>[\downarrow \pi_4]</td>
</tr>
<tr>
<td>3</td>
<td>30154</td>
</tr>
<tr>
<td>4</td>
<td>[\downarrow \pi_3]</td>
</tr>
<tr>
<td>5</td>
<td>30514</td>
</tr>
<tr>
<td>6</td>
<td>[\downarrow \pi_2]</td>
</tr>
<tr>
<td>7</td>
<td>35014</td>
</tr>
</tbody>
</table>
Canonical reduced expression

Example: using coset R_5^0 / R_4^0

<table>
<thead>
<tr>
<th>Expression</th>
<th>Corresponding π</th>
</tr>
</thead>
<tbody>
<tr>
<td>30145</td>
<td>π_4</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>30154</td>
<td>π_3</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>30514</td>
<td>π_2</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>35014</td>
<td>π_1</td>
</tr>
<tr>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>53014</td>
<td></td>
</tr>
</tbody>
</table>

Joël Gay
Canonical reduced expression

Example: using coset R_5^0 / R_4^0

<table>
<thead>
<tr>
<th>Expression</th>
<th>Coset</th>
</tr>
</thead>
<tbody>
<tr>
<td>30145</td>
<td>R_5^0</td>
</tr>
<tr>
<td>$\downarrow \pi_4$</td>
<td></td>
</tr>
<tr>
<td>30154</td>
<td>R_4^0</td>
</tr>
<tr>
<td>$\downarrow \pi_3$</td>
<td></td>
</tr>
<tr>
<td>30514</td>
<td></td>
</tr>
<tr>
<td>$\downarrow \pi_2$</td>
<td></td>
</tr>
<tr>
<td>35014</td>
<td></td>
</tr>
<tr>
<td>$\downarrow \pi_1$</td>
<td></td>
</tr>
<tr>
<td>53014</td>
<td></td>
</tr>
<tr>
<td>$\downarrow \pi_0$</td>
<td></td>
</tr>
<tr>
<td>03014</td>
<td></td>
</tr>
</tbody>
</table>
Canonical reduced expression

Example : using coset R_5^0 / R_4^0

<table>
<thead>
<tr>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>30145</td>
</tr>
<tr>
<td>↓ π_4</td>
</tr>
<tr>
<td>30154</td>
</tr>
<tr>
<td>↓ π_3</td>
</tr>
<tr>
<td>30514</td>
</tr>
<tr>
<td>↓ π_2</td>
</tr>
<tr>
<td>35014</td>
</tr>
<tr>
<td>↓ π_1</td>
</tr>
<tr>
<td>53014</td>
</tr>
<tr>
<td>↓ π_0</td>
</tr>
<tr>
<td>03014</td>
</tr>
<tr>
<td>↓ π_1</td>
</tr>
<tr>
<td>30014</td>
</tr>
</tbody>
</table>
Canonical reduced expression

Example: using coset R^0_5 / R^0_4

30145
↓ π_4
30154
↓ π_3
30514
↓ π_2
35014
↓ π_1
53014
↓ π_0
03014
↓ π_1
30014
\circlearrowright π_2
Canonical reduced expression

Example: 30240

\[
\begin{align*}
\pi_0 & \\
\pi_1 & \\
\pi_2 & \\
\pi_3 & \\
\pi_4 & \\
\end{align*}
\]

Conclusion:

\[
\begin{align*}
\pi_0 & \\
\pi_1 & \\
\pi_2 & \\
\pi_3 & \\
\pi_4 & \\
\end{align*}
\] = 30240.
Canonical reduced expression

Example: 30240

Index the zeros by the missing letters in decreasing order: 30_524_0_1

12345 \text{ 1}_5
Canonical reduced expression

Example: 30240

Index the zeros by the missing letters in decreasing order: 3052401

```
12345
012345
· π0
15
π0
```

Conclusion: $[\pi_0 \cdot \pi_1 \cdot \pi_2 \pi_1 \cdot \pi_3 \cdot \pi_4 \pi_3 \pi_2 \pi_1 \pi_0 \pi_1] = 30240$.
Canonical reduced expression

Example: 30240

Index the zeros by the missing letters in decreasing order: 30_240_1

\[
\begin{align*}
&12345 & 1_5 \\
&0_12345 & \cdot \pi_0 \\
&20_1345 & \cdot \pi_1
\end{align*}
\]
Canonical reduced expression

Example: 30240

Index the zeros by the missing letters in decreasing order: 30⁵₂₄₀₁

12345	1₅
0₁₂₃₄₅	⋅ π₀
2₀₁₃₄₅	⋅ π₁
3₂₀₁₄₅	⋅ π₂π₁
Canonical reduced expression

Example: 30240

Index the zeros by the missing letters in decreasing order: 30_5240_1

\[
\begin{array}{l}
12345 \\
0_12345 \\
20_1345 \\
320_145 \\
3240_15 \\
1_5 \\
\cdot \pi_0 \\
\cdot \pi_1 \\
\cdot \pi_2 \pi_1 \\
\cdot \pi_3
\end{array}
\]
Canonical reduced expression

Example: 30240

Index the zeros by the missing letters in decreasing order: 30_5240_1

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>π_0</td>
</tr>
<tr>
<td>0_12345</td>
<td>π_1</td>
</tr>
<tr>
<td>20_1345</td>
<td>$\pi_2\pi_1$</td>
</tr>
<tr>
<td>320_145</td>
<td>π_3</td>
</tr>
<tr>
<td>3240_15</td>
<td>$\pi_4\pi_3\pi_2\pi_1\pi_0\pi_1$</td>
</tr>
</tbody>
</table>

Conclusion: $\pi_0\pi_1\pi_2\pi_3\pi_4 = 30_5240_1$.

Joël Gay
Example: 30240

Index the zeros by the missing letters in decreasing order: 30_5240_1

<table>
<thead>
<tr>
<th>12345</th>
<th>1_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>012345</td>
<td>π_0</td>
</tr>
<tr>
<td>201345</td>
<td>π_1</td>
</tr>
<tr>
<td>320145</td>
<td>$\pi_2 \pi_1$</td>
</tr>
<tr>
<td>324015</td>
<td>π_3</td>
</tr>
<tr>
<td>3052401</td>
<td>$\pi_4 \pi_3 \pi_2 \pi_1 \pi_0 \pi_1$</td>
</tr>
</tbody>
</table>

Conclusion: $1_5 \cdot [\pi_0 \cdot \pi_1 \cdot \pi_2 \pi_1 \cdot \pi_3 \cdot \pi_4 \pi_3 \pi_2 \pi_1 \pi_0 \pi_1] = 30240$.
\(\mathcal{J}\)-triviality

Definition (Green)

Let \(M \) a monoid, \(x, y \in M \). We say that \(x \preceq_{\mathcal{J}} y \) iff \(MxM \subseteq MyM \).

Equivalence relation : \(x\mathcal{J}y \) iff \(MxM = MyM \).

Definition

A monoid is \(\mathcal{J}\)-trivial if its \(\mathcal{J}\)-classes are trivial. Equivalently, its bisided Cayley graph has no cycle except loops.

Example : \(H^0_n \)
J-triviality: H_n^0 right Cayley graph
\mathcal{J}-triviality: H^0_n left Cayley graph
\mathcal{J}-triviality: H^0_n bisided Cayley graph
\mathcal{J}-triviality : R^0_n bisided Cayley graph

Joël Gay

The 0-Rook Monoid
Contents

1 Symmetric Group and Rook Monoid

2 The 0-Rook Monoid

3 Representation theory

4 Work in Progress
Simple modules

Theorem

\(R_n^0 \) is \(\mathcal{J} \)-trivial.
Simple modules

Theorem

R_n^0 is \mathcal{J}-trivial.

Corollary (Application of Denton-Hivert-Schilling-Thiery)

R_n^0 has 2^n idempotents.

It has thus 2^n simple modules of dimension 1.
Descent set

Definition

For $\pi \in R_n^0$, we define its right R-descent set by

$$D_R(\pi) = \{0 \leq i \leq n-1 \mid \pi \pi_i = \pi\}.$$
Definition

For $\pi \in R_n^0$, we define its right R-descent set by

$$D_R(\pi) = \{0 \leq i \leq n - 1 \mid \pi \pi_i = \pi\}.$$

Example: positions

Let $r = 0423007$. $0 < 4 \geq 2 < 3 \geq 0 \geq 0 < 7$.

$D_R(r) = \{0, 2, 4, 5\}$
Descent set

Definition

For $\pi \in R_n^0$, we define its right R-descent set by

$$D_R(\pi) = \{0 \leq i \leq n - 1 \mid \pi\pi_i = \pi\}.$$

Example: positions

Let $r = 0423007$. $0 < 4 \geq 2 < 3 \geq 0 \geq 0 < 7$.

$$D_R(r) = \{0, 2, 4, 5\} \quad \text{Notation:} \quad \begin{array}{c}
0 & 4 \\
2 & 3 \\
0 & 7
\end{array}$$

Warning: Not 0.
Descent set

Definition

For \(\pi \in R_n^0 \), we define its right \(R \)-descent set by

\[
D_R(\pi) = \{ 0 \leq i \leq n - 1 \mid \pi \pi_i = \pi \}.
\]

Example: positions

Let \(r = 0423007 \). \(0 < 4 \geq 2 < 3 \geq 0 \geq 0 < 7 \).

\[
D_R(r) = \{0, 2, 4, 5\} \quad \text{Notation:}
\]

\[
\begin{array}{c}
0 \\
2 \\
0 \\
0
\end{array}
\begin{array}{c}
4 \\
3 \\
7 \\
0
\end{array}
\]

Warning: \(0 \) and not \(00 \).
List of the R-descent types for R^0_4:

\[
\begin{array}{cccc}
\{\} & \{0\} & \{1\} & \{2\} \\
\{1, 2\} & \{1, 3\} & \{2, 3\} & \{0, 1, 2\} \\
\{0, 1, 3\} & \{0, 2, 3\} & \{1, 2, 3\} & \{0, 1, 2, 3\}
\end{array}
\]
The projective indecomposable R^0_n-modules are indexed by the R-descent type and isomorphic to the quotient of the associated R-descent class by the finer R-descent class.
Projectivity over H_n^0

Theorem

The indecomposable projective R_n^0-module splits as a H_n^0-module as the direct sum of all the indecomposable projective H_n^0-modules whose descent classes are explicit.

Proof: explicit decomposition

\[
\begin{align*}
0 &= 0 + 0 = \begin{array}{c}
\text{yellow}
\end{array} + \begin{array}{c}
\text{blue}
\end{array} = \begin{array}{c}
\text{yellow}
\end{array} + \begin{array}{c}
\text{blue}
\end{array} + 2 \begin{array}{c}
\text{yellow}
\end{array} + \begin{array}{c}
\text{blue}
\end{array}.
\end{align*}
\]
Symmetric Group and Rook Monoid

The \(0\)-Rook Monoid

Representation theory

Work in Progress

\[
\begin{array}{c}
0 = \begin{array}{c}
0
\end{array} + \begin{array}{c}
0
\end{array} = \begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
0
\end{array} + \begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
0
\end{array} + \begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array} + 2 \begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array}
\end{array}.
\end{array}
\]
$$0 = 0 + 0 + 0 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 + 0.$$
\[0 = 0 + 0 + 0 + 0 = 0 + 0 + 0 + 0 + 0 + 0 + 0 = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 2 + 0. \]
Contents

1 Symmetric Group and Rook Monoid

2 The 0-Rook Monoid

3 Representation theory

4 Work in Progress
\(R_n^0 \) is a lattice (analogous to permutohedron)
- R^0_n is a lattice (analogous to permutohedron)
- Tower of monoids: induction and restriction (linked to QSym and NCSF, work of Krob and Thibon)
• R^0_n is a lattice (analogous to permutohedron)
• Tower of monoids: induction and restriction (linked to QSym and NCSF, work of Krob and Thibon)
• Renner Monoids (generalization for other Cartan types)
THANK YOU FOR YOUR OUTSTANDING ATTENTION!!
Descent classes are not intervals