The serpent nest conjecture on accordion complexes

Thibault Manneville (LIX, Polytechnique)

78ème Séminaire lotharingien de combinatoire
March 29th, 2017
Accordion dissections

Dissection = set of pairwise noncrossing diagonals

Triangulation = inclusion maximal dissection
Accordion dissections

Cell = bounded conn. comp. of the complement

Triangulation = all cells are triangles
Accordion dissections

Consider interlaced red and blue polygons
Accordion dissections

Fix a reference red dissection D_0
Accordion dissections

\[D_\circ \text{-accordion diagonal} = \text{blue diagonal crossing a connected set of red diagonals} \]
Accordion dissections

D_\circ-accordion diagonal $= \text{blue diagonal crossing a connected set of red diagonals}$

Thibault Manneville (LIX, Polytechnique) The serpent nest conjecture
Accordion dissections

Maximal D_6-accordion dissection = inclusion max. dissection containing blue diagonals
Accordion dissections

Maximal D_6-accordion dissection
“blue dissection”
= inclusion max. dissection containing blue diagonals
Maximal D_9-accordion dissection

"blue dissection" = inclusion max. dissection containing blue diagonals
Accordion dissections

\(D_\circ\) is a triangulation
Accordion dissections

D_0 is a triangulation \implies blue dissection $=$ blue triangulations

$C_n := \frac{1}{n+1} \binom{2n}{n}$
History

Baryshnikov, *On Stokes sets* (2001)
History

Baryshnikov, *On Stokes sets* (2001)
Chapoton, *Stokes posets and serpent nests* (2016)

Are Stokes posets lattices?

Are Stokes complexes realizable as polytopes?

\#(elements of Stokes posets) = \#(serpent nests)?
History

Baryshnikov, *On Stokes sets* (2001)

Chapoton, *Stokes posets and serpent nests* (2016)

Are Stokes posets lattices?

Are Stokes complexes realizable as polytopes?

\[\#(\text{elements of Stokes posets}) = \#(\text{serpent nests})? \]
History

Baryshnikov, *On Stokes sets* (2001)
Chapoton, *Stokes posets and serpent nests* (2016)

Are Stokes posets lattices?

Are Stokes complexes realizable as polytopes?

#(elements of Stokes posets) = #(serpent nests)?
Baryshnikov, *On Stokes sets* (2001)

Chapoton, *Stokes posets and serpent nests* (2016)

Are Stokes posets lattices?

Are Stokes complexes realizable as polytopes?

#(elements of Stokes posets) = #(serpent nests)?
Serpent nests

Dual tree D_0^* of $D_0 = \text{vertices: cells of } D_0$

edges: internal diagonals of D_0
Serpent nests

Serpent of $D_\circ = \text{nonempty undirected dual path in } D^*_\circ$

crossing a connected set of diagonals
Serpent nests

Serpent of $D_\circ = \text{nonempty undirected dual path in } D^*_\circ$ crossing a connected set of diagonals

![Diagram of Serpent nests](image)
Serpent nests

Serpent nest of $D_0 = \text{set of serpents of } D_0 \text{ with some conditions:**}
Serpent nests

Serpent nest of $D_\circ = \text{set of serpents of } D_\circ \text{ with some conditions:}$
Serpent nests

Serpent nest of $D_\circ = \text{set of serpents of } D_\circ \text{ with three conditions: no crossing}$
Serpent nests

Serpent nest of $D_\circ = \text{set of serpents of } D_\circ \text{ with three conditions: no crossing, no common arrival}$
Serpent nests

Serpent nest of $D_6 = \text{set of serpents of } D_6 \text{ with three conditions: no crossing, no common arrival}$
Serpent nests

Serpent nest of $D_0 = \text{set of serpents of } D_0 \text{ with three conditions: no crossing, no common arrival}
Serpent nests

Serpent nest of $D_\circ = \text{set of serpents of } D_\circ \text{ with three conditions: no crossing, no common arrival, no over heading}$
D₀ is a comb triangulation \iff serpent nests $= \text{noncrossing partitions} \left(C_n \right)$
Serpent nests

D_o is a comb triangulation \implies serpent nests $=$ noncrossing partitions (C_n)
Theorem (M. 2017+)

For any dissection D_\circ,

$\#(\text{maximal } D_\circ\text{-accordion dissections}) = \#(\text{serpent nests of } D_\circ)$
Catalan-like bijection

\[C_{n+1} = \sum_{k=0}^{n} C_k \times 1 \times C_{n-k} \]
Proof: induction on \(\#(\text{diagonals of } D_\circ)\)
Proof: induction on $\#(\text{diagonals of } D_o)$
Proof: induction on $\#(\text{diagonals of } D_o)$
Proof: \{ maximal D_6-accordion dissections \} \rightarrow \{ serpent nests of D_6 \}
Proof: there exists $x_\bullet \in [6_\bullet, 28_\bullet]$ such that $\{(2_\bullet, x_\bullet), (4_\bullet, x_\bullet)\} \subseteq D_\bullet$.
Proof: separate D according to x.

Thibault Manneville (LIX, Polytechnique) The serpent nest conjecture
Proof: separate D according to x.

Thibault Manneville (LIX, Polytechnique) The serpent nest conjecture
Proof: apply the bijections obtained inductively on each side
Proof: unfold the serpents
Proof: unfold the serpents
Proof: consider red diagonals crossed by both $(2, x)$ and $(4, x)$.
Proof: keep only disconnecting diagonals (zigzag)
Proof: insert the serpent from \((1°, 3°)\) to the furthest possible one.
Proof: insert the serpent from \((1_\circ, 3_\circ)\) to the furthest possible one

Thibault Manneville (LIX, Polytechnique) The serpent nest conjecture
Proof: insert the serpent from \((1\circ, 3\circ)\) to the furthest possible one
Proof: insert the serpent from $(1°, 3°)$ to the furthest possible one
Proof: \{\text{serpent nests of } D_\circ\} \rightarrow \{\text{maximal } D_\circ\text{-accordion dissections}\}
Proof: validly extend S around successive pivots

Thibault Manneville (LIX, Polytechnique) The serpent nest conjecture
Proof: validly extend S around successive pivots
Proof: validly extend S around successive pivots
Proof: separate according to π.

Thibault Manneville (LIX, Polytechnique) The serpent nest conjecture
Proof: apply reverse bijections inductively obtained
Proof: apply reverse bijections inductively obtained
Proof: glue back together
Proof: glue back together

Thibault Manneville (LIX, Polytechnique) The serpent nest conjecture
Theorem (M. 2017$^+$)

For any dissection D_o,
$\#(\text{maximal } D_o\text{-accordion dissections}) = \#(\text{serpent nests of } D_o)$
THANK YOU FOR YOUR KIND LISTENING!

Quessssssssstions?