Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Basics
Parking Functions
Noncrossing Partitions
A Subposet of Noncrossing Partitions
Another Subposet of Noncrossing Partitions

March 29, 2017
Séminaire Lotharingien de Combinatoire
(Domaine St. Jacques, Ottrott)
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Outline

1. Basics
 - Parking Functions
 - Noncrossing Partitions

2. A Subposet of Noncrossing Partitions

3. Another Subposet of Noncrossing Partitions
Outline

1. Basics
 - Parking Functions
 - Noncrossing Partitions

2. A Subposet of Noncrossing Partitions

3. Another Subposet of Noncrossing Partitions
Parking Functions

- $[n] = \{1, 2, \ldots, n\}$
- **parking function**: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n
Parking Functions

- \([n] = \{1, 2, \ldots, n\}\)
- **parking function**: a map \(f : [n] \rightarrow [n]\) such that for all \(k \in [n]\) the set \(f^{-1}([k])\) has at least \(k\) elements
- \(\mathbb{PF}_n\) .. set of all parking functions of length \(n\)

- \(\mathbb{PF}_3:\)

 \[
 \begin{align*}
 (1, 1, 1) & \quad (1, 1, 2) & \quad (1, 1, 3) & \quad (1, 2, 1) & \quad (1, 2, 2) & \quad (1, 2, 3) \\
 (1, 3, 1) & \quad (1, 3, 2) & \quad (2, 1, 1) & \quad (2, 1, 2) & \quad (2, 1, 3) & \quad (2, 2, 1) \\
 (2, 3, 1) & \quad (3, 1, 1) & \quad (3, 1, 2) & \quad (3, 2, 1)
 \end{align*}
 \]
Parking Functions

- \([n] = \{1,2,\ldots,n\}\)
- **parking function**: a map \(f: [n] \to [n]\) such that for all \(k \in [n]\) the set \(f^{-1}([k])\) has at least \(k\) elements
- \(\mathbb{PF}_n\) : set of all parking functions of length \(n\)

Theorem (Folklore)

For \(n \geq 0\), the cardinality of \(\mathbb{PF}_n\) is \((n + 1)^{n-1}\).
Parking Functions

- \([n] = \{1, 2, \ldots, n\}\)
- **parking function**: a map \(f: [n] \to [n]\) such that for all \(k \in [n]\) the set \(f^{-1}([k])\) has at least \(k\) elements
- \(\mathbb{PF}_n\) .. set of all parking functions of length \(n\)
Parking Functions

- \([n] = \{1, 2, \ldots, n\}\)
- **parking function**: a map \(f : [n] \rightarrow [n]\) such that for all \(k \in [n]\) the set \(f^{-1}([k])\) has at least \(k\) elements
- \(\mathbb{PF}_n\) .. set of all parking functions of length \(n\)
Parking Functions

- $[n] = \{1, 2, \ldots, n\}$
- **parking function**: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- PF_n .. set of all parking functions of length n
Parking Functions

- $[n] = \{1, 2, \ldots, n\}$
- **parking function**: a map $f : [n] \rightarrow [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathcal{PF}_n .. set of all parking functions of length n
Parking Functions

- $[n] = \{1, 2, \ldots, n\}$
- **parking function**: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n
Parking Functions

- $[n] = \{1, 2, \ldots, n\}$
- **parking function**: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}(\{k\})$ has at least k elements
- PF_n .. set of all parking functions of length n
Parking Functions

- $[n] = \{1, 2, \ldots, n\}$
- **parking function**: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathcal{PF}_n .. set of all parking functions of length n
Parking Functions

- $[n] = \{1, 2, \ldots, n\}$
- **parking function**: a map $f : [n] \rightarrow [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathcal{PF}_n .. set of all parking functions of length n
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Basics
Parking Functions
Noncrossing Partitions

A Subposet of Noncrossing Partitions

Another Subposet of Noncrossing Partitions

Parking Functions

- $[n] = \{1, 2, \ldots, n\}$
- **parking function**: a map $f : [n] \rightarrow [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n
Parking Functions

- $[n] = \{1, 2, \ldots, n\}$
- **parking function**: a map $f : [n] \rightarrow [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n
Parking Functions

- \([n] = \{1, 2, \ldots, n\}\)
- **parking function**: a map \(f : [n] \to [n]\) such that for all \(k \in [n]\) the set \(f^{-1}([k])\) has at least \(k\) elements
- \(\mathcal{PF}_n\) .. set of all parking functions of length \(n\)
Parking Functions

- $[n] = \{1, 2, \ldots, n\}$
- **parking function**: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathbb{PF}_n .. set of all parking functions of length n
Parking Functions

- $[n] = \{1, 2, \ldots, n\}$
- **parking function**: a map $f : [n] \to [n]$ such that for all $k \in [n]$ the set $f^{-1}([k])$ has at least k elements
- \mathcal{PF}_n .. set of all parking functions of length n
Parking Functions

- \([n] = \{1, 2, \ldots, n\}\)
- **parking function**: a map \(f : [n] \to [n]\) such that for all \(k \in [n]\) the set \(f^{-1}([k])\) has at least \(k\) elements
- \(\mathcal{PF}_n\) .. set of all parking functions of length \(n\)
Parking Functions

- \([n] = \{1, 2, \ldots, n\}\)
- **parking function**: a map \(f : [n] \to [n]\) such that for all \(k \in [n]\) the set \(f^{-1}([k])\) has at least \(k\) elements
- \(\mathcal{PF}_n\) .. set of all parking functions of length \(n\)
Undesired Parking Spaces

Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Basics

Parking Functions

Noncrossing Partitions

A Subposet of Noncrossing Partitions

Another Subposet of Noncrossing Partitions
Undesired Parking Spaces

- **k-avoiding parking function**: $f \in \text{PF}_n$ with $k \notin f$, but $l \in f$ for all $l > k$
- $\text{PF}_{n,k}$.. set of all k-avoiding parking functions
Undesired Parking Spaces

- **\(k\)-avoiding parking function**: \(f \in \mathbb{PF}_n\) with \(k \notin f\), but \(l \in f\) for all \(l > k\)
- \(\mathbb{PF}_{n,k}\) : set of all \(k\)-avoiding parking functions

- \(\mathbb{PF}_3:\)

 \[
 (1,1,1) \quad (1,1,2) \quad (1,1,3) \quad (1,2,1) \quad (1,2,2) \quad (1,2,3) \\
 (1,3,1) \quad (1,3,2) \quad (2,1,1) \quad (2,1,2) \quad (2,1,3) \quad (2,2,1) \\
 (2,3,1) \quad (3,1,1) \quad (3,1,2) \quad (3,2,1)
 \]
Undesired Parking Spaces

- **k-avoiding parking function**: $f \in \mathbb{PF}_n$ with $k \not\in f$, but $l \in f$ for all $l > k$

- $\mathbb{PF}_{n,k}$.. set of all k-avoiding parking functions

\[
\mathbb{PF}_{3,1}:
\begin{align*}
(1,1,1) & \quad (1,1,2) & \quad (1,1,3) & \quad (1,2,1) & \quad (1,2,2) & \quad (1,2,3) \\
(1,3,1) & \quad (1,3,2) & \quad (2,1,1) & \quad (2,1,2) & \quad (2,1,3) & \quad (2,2,1) \\
(2,3,1) & \quad (3,1,1) & \quad (3,1,2) & \quad (3,2,1)
\end{align*}
\]
Undesired Parking Spaces

- **k-avoiding parking function**: $f \in \text{PF}_n$ with $k \notin f$, but $l \in f$ for all $l > k$

- $\text{PF}_{n,k}$: set of all k-avoiding parking functions

- $\text{PF}_{3,2}$:

 $$(1,1,1) \quad (1,1,2) \quad (1,1,3) \quad (1,2,1) \quad (1,2,2) \quad (1,2,3)$$
 $$(1,3,1) \quad (1,3,2) \quad (2,1,1) \quad (2,1,2) \quad (2,1,3) \quad (2,2,1)$$
 $$(2,3,1) \quad (3,1,1) \quad (3,1,2) \quad (3,2,1)$$
Undesired Parking Spaces

- **k-avoiding parking function**: $f \in \mathcal{PF}_n$ with $k \notin f$, but $l \in f$ for all $l > k$

- $\mathcal{PF}_{n,k}$.. set of all k-avoiding parking functions

- $\mathcal{PF}_{3,3}$:

 - $(1, 1, 1)$
 - $(1, 1, 2)$
 - $(1, 1, 3)$
 - $(1, 2, 1)$
 - $(1, 2, 2)$
 - $(1, 2, 3)$
 - $(1, 3, 1)$
 - $(1, 3, 2)$
 - $(2, 1, 1)$
 - $(2, 1, 2)$
 - $(2, 1, 3)$
 - $(2, 2, 1)$
 - $(2, 3, 1)$
 - $(3, 1, 1)$
 - $(3, 1, 2)$
 - $(3, 2, 1)$
Undesired Parking Spaces

- **\(k \)-avoiding parking function**: \(f \in \mathcal{PF}_n \) with \(k \notin f \), but \(l \in f \) for all \(l > k \)
- \(\mathcal{PF}_{n,k} \): set of all \(k \)-avoiding parking functions

Proposition (M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo & I. Nicolas, 2016)

For \(n \geq 0 \) and \(k \in [n] \), the cardinality of \(\mathcal{PF}_{n,k} \) is

\[
\frac{n!}{k!} | \mathcal{PF}_{k,k} |.
\]
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Undesired Parking Spaces

- **k-avoiding parking function**: \(f \in \mathbb{PF}_n \) with \(k \notin f \), but \(l \in f \) for all \(l > k \)
- \(\mathbb{PF}_{n,k} \) .. set of all \(k \)-avoiding parking functions

Proposition (M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo & I. Nicolas, 2016)

For \(n \geq 0 \) and \(k \in [n] \), the cardinality of \(\mathbb{PF}_{n,k} \) is

\[
\frac{n!}{k!} \left((k + 1)^{k-1} - k^{k-1} \right).
\]
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Outline

1 Basics
 - Parking Functions
 - Noncrossing Partitions

2 A Subposet of Noncrossing Partitions

3 Another Subposet of Noncrossing Partitions
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Basics
Parking Functions
Noncrossing Partitions

A Subposet of Noncrossing Partitions

Another Subposet of Noncrossing Partitions

Noncrossing Partitions ⇒ $\sim \sim N C_n$
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Basics
Parking Functions

Noncrossing Partitions

A Subposet of Noncrossing Partitions

Another Subposet of Noncrossing Partitions

- **noncrossing partition** $\mapsto \mathcal{N}_n$

\[\{\{1, 6, 7\}, \{2, 8, 14, 15\}, \{3, 4, 5\}, \{9, 10, 12, 13\}, \{11\}, \{16\}\}\]
Noncrossing Partitions

- noncrossing partition

\[\{ \{1, 6, 7\}, \{2, 8, 14, 15\}, \{3, 4, 5\}, \{9, 10, 12, 13\}, \{11\}, \{16\} \} \]
Noncrossing Partitions

Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Basics
Parking Functions
Noncrossing Partitions

A Subposet of Noncrossing Partitions

Another Subposet of Noncrossing Partitions

noncrossing partition

\[\sim \rightarrow \mathcal{NC}_n \]

\(\{1, 6, 7\}, \{2, 8, 14, 15\}, \{3, 4, 5\}, \{9, 10, 12, 13\}, \{11\}, \{16\} \)
Noncrossing Partitions

\[\{1, 2, 6, 7, 8, 14, 15\}, \{3, 4, 5\}, \{9, 10, 12, 13\}, \{11\}, \{16\} \]
Noncrossing Partitions

Theorem (G. Kreweras, 1972)

For $n \geq 0$, the cardinality of NC_n is

$$\text{Cat}(n) = \frac{1}{n+1} \binom{2n}{n}.$$
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Basics
Parking Functions
Noncrossing Partitions

A Subposet of Noncrossing Partitions

Another Subposet of Noncrossing Partitions

- **dual refinement order**

\[\sim \leq_{dref} \]

\[\{\{1,2,6,7,8,14,15\},\{3,4,5\},\{9,10,12,13\},\{11\},\{16\}\} \]
Noncrossing Partitions

- dual refinement order

\[\sim \leq_{\text{dref}} \]

\{ \{1, 2, 6, 7, 8, 14, 15\}, \{3, 4, 5\}, \{9, 10, 12, 13\}, \{11\}, \{16\} \}
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri M"uhle

Basics
Parking Functions
Noncrossing Partitions

A Subposet of Noncrossing Partitions

Another Subposet of Noncrossing Partitions

dual refinement order

\[\rightsquigarrow \leq_{dref} \]

\(\{1, 2, 3, 4, 5, 6, 7, 8, 14, 15\} , \{9, 10, 12, 13\} , \{11\} , \{16\} \)
Theorem (G. Kreweras, 1972)

For \(n \geq 0 \), the poset \((\mathcal{NC}_n, \leq_{\text{dref}})\) is a lattice.
Example: \((\mathcal{NC}_4, \leq_{\text{dref}})\)
A Bijection

- if $x \lessdot_{dref} y$, then there are $B, B' \in x$ such that

$$y = (x \setminus \{B, B'\}) \cup (B \cup B')$$
A Bijection

- if $x \preceq_{dref} y$, then there are $B, B' \in x$ such that

$$y = (x \setminus \{B, B'\}) \cup (B \cup B')$$
A Bijection

- If $x \preceq_{\text{dref}} y$, then there are $B, B' \in x$ such that

$$y = (x \setminus \{B, B'\}) \cup (B \cup B')$$
A Bijection

if \(x \preceq_{\text{dref}} y \), then there are \(B, B' \in x \) such that

\[
y = (x \setminus \{B, B'\}) \cup (B \cup B')
\]
if $x \preceq \text{dref } y$, then there are $B, B' \in x$ such that

$$y = (x \setminus \{B, B'\}) \cup (B \cup B')$$

define $\pi(x, y) = \max\{i \in B \mid i \leq j \text{ for all } j \in B'\}$

(wlog $\min B < \min B'$)
A Bijection

- if $x \preceq_{dref} y$, then there are $B, B' \in x$ such that
 \[y = (x \setminus \{B, B'\}) \cup (B \cup B') \]

- define $\pi(x, y) = \max\{i \in B \mid i \leq j \text{ for all } j \in B'\}$
 (wlog $\min B < \min B'$)
A Bijection

- if \(x \prec_{\text{dref}} y \), then there are \(B, B' \in x \) such that
 \[
y = (x \setminus \{B, B'\}) \cup (B \cup B')
 \]
- define \(\pi(x, y) = \max\{i \in B \mid i \leq j \text{ for all } j \in B'\} \)
 \(\text{ (wlog } \min B < \min B')\)
A Bijection

- π extends to a labeling of the maximal chains of $(NC_n, \leq_{\text{dref}}) \mapsto C_n$
A Bijection

- \(\pi\) extends to a labeling of the maximal chains of \((\mathcal{NC}_n, \leq_{\text{dref}})\)

Theorem (R. Stanley, 1997; P. Biane, 2001)

The map \(\pi\) is a bijection from \(\mathcal{C}_n\) to \(\mathcal{PF}_{n-1}\).
Example: \((\mathcal{NC}_4, \leq_{d_{\text{ref}}})\)
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Outline

1. Basics
 - Parking Functions
 - Noncrossing Partitions

2. A Subposet of Noncrossing Partitions

3. Another Subposet of Noncrossing Partitions
What about $\mathcal{PF}_{n,k}$?

Idea (M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo & I. Nicolas, 2016)

For $1 < k < n$ study the subposet of $(\mathcal{NC}_n, \leq_{dref})$ induced by the maximal chains in $\mathcal{PF}_{n-1,k}$.

• denote this poset by $\mathcal{P}_{n,k}$
Example: \((\mathcal{NC}_4, \leq_{\text{dref}})\)
Example: $P_{4,2}$
Example: $\mathcal{P}_{4,3}$
Some Properties

- B_n .. Boolean lattice of rank n

Theorem (M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo & I. Nicolas, 2016)

If $n > k$, then $\mathcal{P}_{n,k} \cong \mathcal{P}_{k+1,k} \times B_{n-k-1}$.
Some Properties

- **Möbius function:**

\[
\mu_P(x, y) = \begin{cases}
1, & x = y \\
- \sum_{x \leq z < y} \mu(x, z), & x < y \\
0, & \text{otherwise}
\end{cases}
\]

- let \(0 = 1|2|\cdots|n\) and \(1 = 123\cdots n\)

Theorem (M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo & I. Nicolas, 2016)

For \(1 < k < n\) we have \(\mu_{P_{n,k}}(0, 1) = 0\).
Some Properties

- **order complex**: simplicial complex whose faces are chains

Conjecture (M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo & I. Nicolas, 2016)

The order complex of $\mathcal{P}_{n,k} \setminus \{0,1\}$ is contractible.
Outline

1. Basics
 - Parking Functions
 - Noncrossing Partitions

2. A Subposet of Noncrossing Partitions

3. Another Subposet of Noncrossing Partitions
The Elements of $\mathcal{P}_{n,n-1}$

- the Structure Theorem implies that it suffices to study $\mathcal{P}_{n,n-1}$
the Structure Theorem implies that it suffices to study $\mathcal{P}_{n,n-1}$

write $i \sim_x j$ if there exists $B \in x$ with $i, j \in B$

define $X_n = \{ x \in NC_n \mid \{n-1, n\} \in x \}$

$Y_n = \{ x \in NC_n \mid \{n\} \in x$ and $1 \sim_x n-1 \}$

let $PE_n = NC_n \setminus (X_n \cup Y_n)$
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Basics
Parking Functions Noncrossing Partitions

A Subposet of Noncrossing Partitions

Another Subposet of Noncrossing Partitions

The Elements of $\mathcal{P}_{n,n-1}$

- the Structure Theorem implies that it suffices to study $\mathcal{P}_{n,n-1}$
- write $i \sim_x j$ if there exists $B \in x$ with $i, j \in B$
- define $X_n = \{ x \in \text{NC}_n \mid \{n-1, n\} \in x \}$

 $Y_n = \{ x \in \text{NC}_n \mid \{n\} \in x \text{ and } 1 \sim_x n-1 \}$
- let $\mathcal{P}E_n = \text{NC}_n \setminus (X_n \cup Y_n)$

Lemma (M. Bruce, M. Dougherty, M. Hlavacek, R. Kudo & I. Nicolas, 2016)

For $n \geq 3$ the ground set of $\mathcal{P}_{n,n-1}$ is precisely $\mathcal{P}E_n$.
The Elements of $\mathcal{P}_{n,n-1}$

- the Structure Theorem implies that it suffices to study $\mathcal{P}_{n,n-1}$
- write $i \sim_x j$ if there exists $B \in x$ with $i, j \in B$
- define $X_n = \{x \in \mathcal{NC}_n \mid \{n-1, n\} \in x\}$

 $Y_n = \{x \in \mathcal{NC}_n \mid \{n\} \in x \text{ and } 1 \sim_x n-1\}$
- let $PE_n = \mathcal{NC}_n \setminus (X_n \cup Y_n)$

Corollary

We have $|PE_3| = 3$ and for $n \geq 4$

$$|PE_n| = \text{Cat}(n) - 2\text{Cat}(n-2).$$
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri M"uhle

Basics
Parking Functions Noncrossing Partitions

A Subposet of Noncrossing Partitions

Another Subposet of Noncrossing Partitions

The Elements of $\mathcal{P}_{n,n-1}$

- the Structure Theorem implies that it suffices to study $\mathcal{P}_{n,n-1}$
- write $i \sim_{x} j$ if there exists $B \in x$ with $i, j \in B$
- define $X_n = \{ x \in \text{NC}_n | \{ n-1, n \} \in x \}$
 $Y_n = \{ x \in \text{NC}_n | \{ n \} \in x$ and $1 \sim_{x} n - 1 \}$
- let $PE_n = \text{NC}_n \setminus (X_n \cup Y_n)$

Corollary

We have $|PE_3| = 3$ and for $n \geq 4$

$$|PE_n| = \left(\frac{5}{n+1} + \frac{9}{n-3} \right) \left(\frac{2n-4}{n-4} \right).$$
The Elements of $\mathcal{P}_{n,n-1}$

- the Structure Theorem implies that it suffices to study $\mathcal{P}_{n,n-1}$

- write $i \sim_x j$ if there exists $B \in x$ with $i, j \in B$

- define $X_n = \{ x \in \text{NC}_n | \{ n-1, n \} \in x \}$

- $Y_n = \{ x \in \text{NC}_n | \{ n \} \in x$ and $1 \sim_x n-1 \}$

- let $\text{PE}_n = \text{NC}_n \setminus (X_n \cup Y_n)$

- How about we study the poset $(\text{PE}_n, \leq_{dref})$ a bit?
Example: \(\mathcal{P}_{4,3} \)
Example: \((PE_4, \leq_{dref})\)
Theorem (Mühle, 2017)

For $n \geq 3$ the poset $(\mathcal{PE}_n, \leq_{dref})$ is a graded lattice.
Some Properties

- **left-modular**: \(x \) that satisfies \((y \lor x) \land z = y \lor (x \land z)\) for all \(y \leq z \)
Some Properties

- **left-modular**: x that satisfies $(y \lor x) \land z = y \lor (x \land z)$ for all $y \leq z$

- x_i .. noncrossing partition with only non-singleton block $[i - 1] \cup \{n\}$
Some Properties

- **left-modular**: x that satisfies $(y \lor x) \land z = y \lor (x \land z)$ for all $y \leq z$
- x_i .. noncrossing partition with only non-singleton block $[i - 1] \cup \{n\}$

Proposition (Mühle, 2017)

For $i \in [n]$ the element x_i is left-modular in (PE_n, \leq_{dref}).
Some Properties

- **left-modular**: x that satisfies $(y \lor x) \land z = y \lor (x \land z)$ for all $y \leq z$
- x_i is a noncrossing partition with only non-singleton block $[i - 1] \cup \{n\}$

Corollary

For $n \geq 3$ the lattice $(\mathcal{P}E_n, \leq_{\text{dref}})$ is supersolvable.
Some Properties

- for $y \preceq_{dref} z$ define

$$\lambda(y, z) = \min\{i \mid z = y \lor x_i \land z\} - 1$$
Some Properties

- for \(y \triangleleft_{d\text{ref}} z \) define

\[
\lambda(y, z) = \min\{ i \mid z = y \lor x_i \land z \} - 1
\]

Corollary

For \(n \geq 3 \) the map \(\lambda \) is an EL-labeling of \((PE_n, \leq_{d\text{ref}})\).
Example: \((PE_4, \leq_{\text{dref}})\)
Example: $P_{4,3}$
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri M"uhle

Basics Parking Functions Noncrossing Partitions

A Subposet of Noncrossing Partitions

Another Subposet of Noncrossing Partitions

Proposition (‡, 2017)

For $n \geq 3$, the map λ restricts to an EL-labeling of $\mathcal{P}_{n,n-1}$.
Solving the Conjecture

- recall: $\mathcal{P}_{n,k} \cong \mathcal{P}_{k+1,k} \times \mathcal{B}_{n-k-1}$

Corollary

For $1 < k < n$ there exists an EL-labeling for $\mathcal{P}_{n,k}$.
Solving the Conjecture

- recall: $\mu_{P_{n,k}}(0,1) = 0$

Corollary

For $1 < k < n$ the order complex of $P_{n,k} \setminus \{0,1\}$ is homotopy equivalent to a wedge of $(n - 2)$-dimensional spheres. The number of these spheres is given by $\mu_{P_{n,k}}(0,1)$.
Solving the Conjecture

- recall: $\mu_{P_{n,k}}(0,1) = 0$

Corollary

For $1 < k < n$ the order complex of $P_{n,k} \setminus \{0,1\}$ is contractible.
Thank You.
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Mobius Function

4 Möbius Function

5 Type B
What about $\mu(PE_n, \leq_{dref})(0, 1)$?

- $a_{i,j}$.. noncrossing partition with only non-singleton block $\{i, j\}$
- $\tilde{A}_n = \{a_{i,j} \mid 1 \leq i < j \leq n\} \setminus \{a_{1,n-1}, a_{n-1,n}\}$
- let \leq be any partial order on $\tilde{A}_n; X \subseteq \tilde{A}_n$
What about $\mu(\text{PE}_n, \leq_{\text{dref}})(0,1)$?

- **bounded below**: for every $x \in X$ there is $a \in \bar{A}_n$ such that $a \triangleleft x$ and $a <_{\text{dref}} \bigvee X$
What about $\mu(PE_n, \leq_{dref})(0, 1)$?

- **bounded below**: for every $x \in X$ there is $a \in \bar{A}_n$ such that $a \nless x$ and $a <_{dref} \bigvee X$
What about $\mu(P_{E_n}, \leq_{\text{dref}})(0, 1)$?

- **bounded below:** for every $x \in X$ there is $a \in \bar{A}_n$ such that $a \triangleleft x$ and $a <_{\text{dref}} \bigvee X$
What about $\mu(P_{E_n, \leq_{dref}})(0, 1)$?

- **bounded below**: for every $x \in X$ there is $a \in \bar{A}_n$ such that $a \lhd x$ and $a <_{dref} \bigvee X$
What about \(\mu_{(P_{E_n}, \leq_{dref})}(0, 1) \)?

- **bounded below**: for every \(x \in X \) there is \(a \in \bar{A}_n \) such that \(a \prec x \) and \(a <_{dref} \bigvee X \)
What about $\mu_{PE_n,\leq_{dref}}(0,1)$?

- **bounded below**: for every $x \in X$ there is $a \in \bar{A}_n$ such that $a \triangleleft x$ and $a <_{dref} \bigvee X$
- **NBB**: no nonempty subset of X is BB
- **NBB-base** for x: X is NBB and $\bigvee X = x$

Diagram:
What about $\mu_{(PE_n, \leq \text{dref})}(0, 1)$?

- **bounded below**: for every $x \in X$ there is $a \in \bar{A}_n$ such that $a \prec x$ and $a <_{\text{dref}} \bigvee X$
- **NBB**: no nonempty subset of X is BB
- **NBB-base** for x: X is NBB and $\bigvee X = x$
What about $\mu_{(PE_n, \leq_{dref})}(0, 1)$?

- **bounded below**: for every $x \in X$ there is $a \in \bar{A}_n$ such that $a \triangleleft x$ and $a <_{dref} \bigvee X$
- **NBB**: no nonempty subset of X is BB
- **NBB-base** for x: X is NBB and $\bigvee X = x$

![Diagram of posets](diagram.png)
What about $\mu_{(PE_n, \leq_{dref})}(0, 1)$?

- **bounded below**: for every $x \in X$ there is $a \in \bar{A}_n$ such that $a \triangleleft x$ and $a <_{dref} \bigvee X$
- **NBB**: no nonempty subset of X is BB
- **NBB-base** for x: X is NBB and $\bigvee X = x$

```
1|234
 ▽
1|23|4 ▽ 1|24|3 ▽ 12|3|4 ▽ 14|2|3
 ▼
1|2|3|4
```

not NBB
What about $\mu(PE_n, \leq_{dref})(0, 1)$?

- **bounded below**: for every $x \in X$ there is $a \in \bar{A}_n$ such that $a \triangleleft x$ and $a <_{dref} \bigvee X$
- **NBB**: no nonempty subset of X is BB
- **NBB-base** for x: X is NBB and $\bigvee X = x$

Diagram:

```
1234
1|234   14|23   134|2   124|3
   ▶      ▶      ▶      ▶
1|23|4   1|24|3   12|3|4   14|2|3  NBB-base for 1
1|2|3|4
```
What about $\mu(PE_n, \leq_{dref})(0, 1)$?

- **bounded below**: for every $x \in X$ there is $a \in \bar{A}_n$ such that $a \triangleleft x$ and $a <_{dref} \bigvee X$
- **NBB**: no nonempty subset of X is BB
- **NBB-base** for x: X is NBB and $\bigvee X = x$

Theorem (A. Blass, B. Sagan, 1997)

Let $\mathcal{P} = (P, \leq)$ be a finite lattice and \leq any partial order on the atoms of \mathcal{P}. For $x \in P$ we have

$$\mu_{\mathcal{P}}(\hat{0}, x) = \sum_X (-1)^{|X|},$$

where the sum runs over the NBB-bases for x.

Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri Mühle

Möbius Function

Type B

NBB-Bases for 1 in (PE_n, \leq_{dref})

- subsets of \bar{A}_n correspond to certain graphs on $[n]$

\[
\{a_{1,4}, a_{2,3}, a_{2,4}\} \iff \begin{array}{c}
1 \\
\times \\
3 \\
\end{array} \begin{array}{c}
2 \\
| \\
4 \\
\end{array}
\]
NBB-Bases for 1 in \((PE_n, \leq_{dref})\)

- Let \(\{x_1, x_2, \ldots, x_n\}\) be the left-modular chain from before.
- Let \(A_i = \{a \in \bar{A}_n \mid a \not\leq_{dref} x_i \text{ and } a \leq_{dref} x_{i+1}\}\).
NBB-Bases for 1 in (PE_n, \leq_{dref})

- let $\{x_1, x_2, \ldots, x_n\}$ be the left-modular chain from before
- let $A_i = \{a \in \bar{A}_n \mid a \not\leq_{dref} x_i \text{ and } a \leq_{dref} x_{i+1}\}$
- let $a \preceq a'$ if and only if $a \in A_i, a' \in A_j \text{ and } i \leq j$
Let \(\{x_1, x_2, \ldots, x_n\} \) be the left-modular chain from before.

Let \(A_i = \{a \in \bar{A}_n \mid a \nleq_{\text{dref}} x_i \text{ and } a \leq_{\text{dref}} x_{i+1}\} \)

Let \(a \sqsubseteq a' \) if and only if \(a \in A_i, a' \in A_j \text{ and } i \leq j \)
NBB-Bases for 1 in \((PE_n, \leq_{\text{dref}})\)

- let \(\{x_1, x_2, \ldots, x_n\}\) be the left-modular chain from before
- let \(A_i = \{a \in \overline{A}_n \mid a \not\leq_{\text{dref}} x_i \text{ and } a \leq_{\text{dref}} x_{i+1}\}\)
- let \(a \sqsubseteq a'\) if and only if \(a \in A_i, a' \in A_j\) and \(i \leq j\)

Proposition (\(\bigcirc\), 2017)

For \(n \geq 3\) the NBB-bases for 1 in \((PE_n, \leq_{\text{dref}})\) are precisely those maximal chains of \((\overline{A}_n, \leq)\), whose associated graph is a tree with an edge between 1 and \(n\) such that:

- the removal of this edge yields two trees on vertices \([k]\) and \(\{k + 1, k + 2, \ldots, n\}\) for some \(k \in [n - 2]\), and
- there is no edge between \(n - 1\) and \(n\).
NBB-Bases for 1 in (PE_n, \leq_{dref})

- let $\{x_1, x_2, \ldots, x_n\}$ be the left-modular chain from before
- let $A_i = \{a \in \bar{A}_n \mid a \not\leq_{dref} x_i \text{ and } a \leq_{dref} x_{i+1}\}$
- let $a \preceq a'$ if and only if $a \in A_i, a' \in A_j$ and $i \leq j$

Corollary

For $n \geq 3$ we have

$$\mu(PE_n, \leq_{dref})(0, 1) = (-1)^{n-1}\left(\text{Cat}(n - 1) - 2\text{Cat}(n - 2)\right).$$
NBB-Bases for 1 in \((PE_n, \leq_{\text{dref}})\)

- let \(\{x_1, x_2, \ldots, x_n\}\) be the left-modular chain from before
- let \(A_i = \{a \in \bar{A}_n \mid a \not\leq_{\text{dref}} x_i \text{ and } a \leq_{\text{dref}} x_{i+1}\}\)
- let \(a \preceq a'\) if and only if \(a \in A_i, a' \in A_j\) and \(i \leq j\)

Corollary

For \(n \geq 3\) we have

\[
\mu(PE_n, \leq_{\text{dref}})(0,1) = (-1)^{n-1} \frac{4}{n} \binom{2n-5}{n-4}.
\]
Type B

- **parking function of type B:** a map $f: [n] \rightarrow [n] \leadsto \mathbb{PF}_n$
- **noncrossing partition of type B:** noncrossing partition of $[2n]$ symmetric under rotation by $180^\circ \leadsto \mathbb{NC}_n$
- \mathcal{C}_n^B .. maximal chains of $(\mathbb{NC}_n, \leq_{dref})$

Theorem (P. Biane, 2001)

There is a bijection from \mathcal{C}_n^B to \mathbb{PF}_n^B.
Type B

- **k-avoiding parking function of type B:** $f \in \mathcal{PF}_n^B$ with $k \notin f$, but $l \in f$ for all $l > k$

- $\mathcal{P}^B_{n,k}$.. poset induced by $\mathcal{PF}^B_{n,k}$

- \mathcal{PE}^B_n .. ground set of $\mathcal{P}^B_{n,n}$
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri M"uhle

M"obius Function

Type B

- **k-avoiding parking function of type B**: $f \in \mathbb{PF}_n^B$ with $k \notin f$, but $l \in f$ for all $l > k$
- P_n^B .. poset induced by \mathbb{PF}_n^B
- PE_n^B .. ground set of P_n^B
Type B

- **k-avoiding parking function of type B**: \(f \in PF_B^n \) with \(k \not\in f \), but \(l \in f \) for all \(l > k \)
- \(P_{n,k}^B \) .. poset induced by \(PF_{n,k}^B \)
- \(PE_n^B \) .. ground set of \(P_{n,n}^B \)

Conjecture (‡, 2017)

For \(n \geq 0 \), we have \(\mu_{P_B^{n,n}}(0, 1) = 0 \).
Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces

Henri M"uhle

Mobius Function

Type B

Type B

- **k-avoiding parking function of type B**: $f \in PF_n^B$ with $k \notin f$, but $l \in f$ for all $l > k$
- $P_{n,k}^B$.. poset induced by $PF_{n,k}^B$
- PE_n^B .. ground set of $P_{n,n}^B$

Conjecture (.sax, 2017)

For $n \geq 0$, we have

$$|PE_n^B| = \binom{2n}{n} - 3 \binom{2n-3}{n-1}.$$
Type B

- **k-avoiding parking function of type B**: $f \in \mathcal{PF}_n^B$ with $k \not\in f$, but $l \in f$ for all $l > k$
- $\mathcal{P}_{n,k}^B$.. poset induced by $\mathcal{PF}_{n,k}^B$
- \mathcal{PE}_{n}^B .. ground set of $\mathcal{P}_{n,n}^B$

Conjecture (Harami, 2017)

For $n \geq 0$, we have

$$\mu_{(\mathcal{PE}_n^B, \preceq_{\text{dref}})}(0, 1) = (-1)^n \binom{2n - 3}{n - 3}.$$
Example: \((\mathcal{NC}_3^B, \leq_{dref}) \)
Example: \((PE^B_3, \leq_{\text{dref}})\)
Example: $\mathcal{P}_{3,3}^B$